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AlIItnlc:t-Stability and small vibrations of long. thick-walled. circular cylindrical tubes subjected to finite
twist and external pressure are investigated using the theory of finite elastic defomJations in conjunction
with the theory of small defomJations superposed on large elastic defomJations. The material of the tube is
assumed to be isotropic. elastic. homogeneous and incompressible. Anumerical scheme is adop1ed to solve
the system of partial differential equations and the associated boundary conditions IOvemina the problem.
The effect of finite twist on the frequencies and the loss of stability due to uniform external pressure is
displayed by various curves relating the frequencies to initial radial deformation parameter.

INTRODUCTION

The theory of small deformations superposed on large elastic deformations [I} is now one of the
most commonly adopted methods in the analysis of stability of thick and thick-Walled bodies
subjected to large elastic deformations. References [2-5} are among the notable works in this
field published between 1955 and 1969. The related dynamic problems have been treated by
Refs. [&-12}. With the exception of [3} and a recent paper by Patterson[t3], the finite
deformations were assumed to be caused either by a uniform external pressure, or a finite twist,
or an end thrust.

The present work is a simple but interesting extension of the studies reported in [10] and
[11]. Namely, the effect of finite twist on the stability and small vibrations of long, thick-walled,
circular cylindrical tubes under external pressure is investigated. The material of the shell is
assumed to be homogeneous, isotropic, perfectly elastic, and incompressible. The tube is first
subjected to a finite twist and an external pressure and is then exposed to secondary dynamical
displacements. The governing equations of the finitely deformed state are obtained by using the
theory of finite elastic deformations[14, 15] while those governing the secondary displacement
field are obtained through the use of the theory of small displacements superposed on large
elastic deformations [I]. The field equations specialized for tubes made of a neo-Hookean
material are solved numerically by the method of complementary functions[16, 17J in con
junction with the Runge-Kutta method of integration. Except for the case when both the axial
and the circumferential wave numbers are zero, the oscillatory characteristics of the tubes are
found to depend both on the amount of finite twist and the external pressure. When the
frequency of oscillations ceases to be real-valued, the tube becomes unstable.

FORMULATION OF THE PROBLEM

1. Finite deformation state
A long, circular cylindrical tube of arbitrary wall thickness and made of a neo--Hookean

material with a strain energy density function W(I), where I is the first strain invariant, is
subjected to a finite twist and a uniform external pressure. The inner and the outer radii of the
undeformed tube are respectively denoted by AI and A,. A state of finite deformation is
assumed such that a material point at coordinates (r, 8, z) in the deformed tube is oriainaUY at
coordinates (R, 8 - az, z) where a is the angle of twist per unit length and R is a function of r
only. The corresponding stress components are given by (see, e.g. Ref. [15]):
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(2)

(3)

(4)

(5)

where $ =2(aWfaI), a, =inner radius of the deformed tube, ql =uniform internal pressure,
and

(6)

Here, it is noted that, due to material incompressibility, R2- rz =A12- a12, and K is also equal
to (R2 -rz)/A12

• Hence, eqns (2) and (3) coincide with eqns (3.4.16) on p. 89 of Ref. [15] when
specialized to the deformations considered in this work.

The external forces required to produce the prescribed deformation field are the resultant
end torque

(7)

the resultant normal force at the ends of the tube

N =211'$ f"2 {[rln [(1- K)(AI2K+ rz)]ln +~ (rz- AI2K_~) _a
ZAI2r (1- K_ rz

z
)]

111 r 2 rz 1- K 2 AI

-ql}dr (8)

and uniform external and internal pressures q.. q2 given by

(9)

where

(10)

2. Small vibrations superposed on finite deformations
The finitely deformed cylinder is now exposed to small vibrations characterized by the

displacement field lV; = lV;(r, fJ, z, t), i = 1,2,3. The equations governing the secondary motions
of the tube are the incompressibility condition

(11)

(12)

(13)
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" -2 2 - r- [a 2r+ ,.J A~ ~ r] WI•z + AI ~+ W3." + (a2+ 2 ~ r) WU. + W3•zz
(AI K+ ) AI K+

...2 2-r-A I K 1, P
+ 2aWuz + ? W3., + </1 P,z =;;; W3." (14)

where p' == p'(r, 6, Z, t) is an unknown pressure associated with the secondary displacement field
and p denotes the current mass density,

The associated boundary conditions

AN(+r 1,
? Wt., + 2</1 P =0,

2
Wu + W2,,-;: W2== 0, on r= a" a2

are obtained from the requirement that the secondary surface tractions vanish.
The solutions to the functions "'i and p' are assumed in the form

+-
W,(r, 8, Z, t) = i ~ UI,,(r) ei(nf.Iu.-.ll,

"--
+00

W2(r, 6, Z, t) = ~ U2"(r) ei(nf.Iu+...ll,
11--01)

+00

W3(r, 6, Z, t) == ~ U3,,(r) ei(nf.lu",ll,,,---p'(r, 8, Z, t) =; ~ U..,,(r) ei(nf.Iu+-.ll.

"--

(15)

(16)

SUbstituting eqns (16) into eqns (11)-(14) and then eliminating U3,,(r) from the resulting set
of one first order and three second order, linear, ordinary differential equations, a set of three
second order equations in UIIII U2" and U.." is obtained:
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where sUbscript n has been omitted for convenience.
The corresponding boundary conditions, eqn (15), reduce to

(18)

(19)

Aa, + r
2
U' +J.. U =0 (20)r1 I 2,p 4 ,

-IIU1+ U2-~ Uz=O, (21)r

on. r=o" 02.

In the absence of. initial twist (4 ... 0) and for k == 0 the above equations compare with those
obtained in {IO}. When K... 0 the problem becomes identical with the one treated in (II).

The system of eqns (I7H22) is solved by the method of complementary functions[16]. For
this purpose eqns (17H 19) are first non-dimensionaJized by introducing

(23)

and then transformed into a set of six first order equations

(24)

where
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The boundary conditions, eqns (20H22), reduce to

719

(27)

(28)

(29)

(30)

on '1 :=: alIA h a~/A I·
Equations (24) are integrated numerically by the Runge-Kutta method of order two six

times to give six sets of solutions y/il, j =1,2, ...,6, such that the jth set ypl satisfies the initial
conditions

i, j = I, 2, ..., 6 (33)

on TJ = '11 = alIA I • 6;i is the Kronecker delta function. The general solution of the system (24) is
the linear combination

i, j =I, 2, ..., 6. (34)

Substituting eqn (34) into the boundary conditions, eqns (3IH33), a 6x6 characteristic
determinant is obtained. For non-trivial solutions, this determinant, which contains the
parameters ii, E, K, n, AI/A~ and <i)2, is required to vanish.

ILLUSTRATIVE EXAMPLE AND DISCUSSION OF THE RESULTS

When n =k:=: 0 eqns (lIHI4) and the boundary conditions (IS) become uncoupled upon
substitution of eqn (16):

In radial direction

(3S)



720

subjected to

In transverse direction
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Al~K U'+ I U-O
--..- I - 4- on r=a .. a~;,. 2rjJ

(36)

subjected to

In axial direction

subjected to

U~-(~) U.=O on r=al a.,- r - • -

Uj=O on r=a"a~.

(37)

(38)

(39)

(40)

The solution of the system given by eqns (35) and (36) corresponding to breathing motions
of the: tube is idcnticaJ with eqn (29) of Ref. [10]. It is seen that the frequencies of pure radial.
torsional and Iolllitudinal oscillations are independent of the initial anile of twist (l and they
are not pursued any further in this study.

For n;lt O. the numerical scheme outlined in the previous section is used since closed form
solutions do not seem possible,

Fipre I shows the non-dimensionaJized frequency cij as a function of the initial radial
deformation parameter K for AdA~ == 0.80. n =-2. It is seen that cij vs K curves depend both
on the amount of the initial twist Ii and the axial wave number f. For a fixed axial wave number
and f;lt 0 the frequencies decrease with increasing initial twist. When k == O. the frequencies
increase with increasilll initial twist.

For the same tube, cij vs f curves for n =+2 are shown in Fig. 2. In this case. a larger initial
twist results in a higher frequency when K and f are held fixed. It is also observed from Fig. 2
that when Ii': Odhe cijvs'Kcurvesareidentiealfor n= +2 and n == -2. When k =O. n =+2

0.7

A,fA.-0.80
n-- 2

06

0'0.0,"00

';.005,i.00

-010 -009 -o.ee -007 -006 -0.05 -0.04 -0.03 -0.02 -0.01 0 001 002 003 004
R

Fig. I. Frequency vs initial radial deformation parameter for various amounts of initial twist and axial wave
numbers.
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Fig. 2. Frequency vs initial radial deformation parameter for various amounts of initial twist and axial wave

numbers.
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Fig. 3. Frequency vs initial radial deformation parameter for various amounts of initial twist and axial and

circumferential wave numbers.
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Fig. 4. Frequencies vs initial radial deformation parameter for 10. 20 and 30 pivotal points along the radial

coordinate.
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and n =-2 give identical wvs K curves for all values of a (Fig. 3). From Fig. 3. it is seen that
the frequencies are independent of the radial deformation parameter K for n =-I and for the
case n =+I. a=o. k=O. In the figure the plot of the case n =+I. a=0.1. k=0.1 shows that
the frequencies decrease with increasing K. For In I> 2. the w vs K curves show similar
patterns to Inl = 2 curves although the frequencies are much higher. These curves are not
shown here.

Oscillatory motions of the tube exist when w is real. When w becomes imaginary.
deformations increase without bound. Thus a critical state of prestress is defined for w2 =O. i.e.
when wchanges from real to imaginary.

For n = -2, Fig. 1 shows that the tube becomes unstable at a smaller external pressure when
a large initial twist is applied while k" 0 is held fixed. This behavior is completely reversed if
the axial wave number is zero and/or n =+2.

In obtaining the curves in Figs. 1-3. 20 pivotal points along the radius were used in the
numerical integration scheme. Figure 4 shows wvs K curves for a thicker tube obtained by
using 10. 20 and 30 pivotal points. A good convergence is achieved at 20 pivotal points.

Acknowledgement-Middle East Technical University. Ankara. Turkey. is gratefully acknowledged for the use of their
computing facilities.

REFERENCES
I. A. E. Green. R. S. Rivlin and R. T. Shield. General theory of small elastic deformation superposed on finite elastic

defotmatioas. Proc. R.. Soc. .utl (I9S2).
2. E. W. Wilkes. On the stability of a circular tube under end thrust. Quart. J. Mech. Appl. Math. 8. 88-100 (1955).
3. A. E. GMIlaDd A. J. M. Speacer. The stability of circular cylinder uDder finite extension and tonioa. J. Mtltlt. Pltys.

17. 316-338 (1958).
4. Z. Wesolowski. Stability of an elastic. thick-walled spherical shell loaded by an extemal preSSlll'e. Arclt. MICh. Stos.

19. 3-23 (1967).
5. J. L. Nowinslti and M. Shahinpoor. Stability of an elastic. circular tube of arbitrary wall thickness subjected to an

external pressure. Int. J. Non-Lin. Merh. 4. 143-158 (1%9).
6. Z. H. Guo. Vibration and stability of a cyli_r subjected to llnite deformation. Arch. Merh. Stos. 14.757-768 (1962).
7. E. S. Suhubi. Smalilolllitudinal vibration of an initially stretched circular cylinder. Int. J. Engllg Sci. Z. 509-512 (1965).
8. H. Demiray and E. S. Suhubi. Small torsional oscillations of an initially twisted circular rubber cylinder. Int. J. Ellgng

Sci. 8. 19-30 (1970).
9. J. L. NowiDalti and M. Shahinpoor. Radial oscillations of a thick-walled spherical hiply stressed nonhomogeneous

shell. J. Frtufldill Illst. 191. 293-304 (197\).
10. A. S. D. Wang and A. Ertet»inar. Stability and vibrations of elastic thick-walled cylindrical and spherical shells

subjected to pressure. lilt. J. NOII·LiIl. Mech. 7. 539-555 (1972).
11. A. Enepinar and A. S. D. Wang. On elastic oscillations of a thick-walled cylindrical shell subjected to initial twist. J.

Appl. Mech. 41(3). 712-715 (1975).
12. A. Ertepinar and H. U. Akay. Radial oscillations of nonhomogeneous. thick·walled cylindrical and spherical shells

subjected to fillite deformations. lilt. J. Solids SI",etll"s 11. 517-524 (1976).
13. J. C. Patterson. Stability of an elastic thick-walled tube under end thrust and external pressure. lilt. J. Non·Lin. Mech.

11. 385-390 (1976).
14. R. S. Rivlin. Larae elastic deformations of isotropic materials. VI. Funher results in the theory of torsion shear and

flexure. P1IiL Tituu.R. Soc. A242. 173-195 (1949).
15. A. E. Green and W. ZenIa, TltlOmieal EluReity. 2nd Edn. Oxford University Press. Oxford (1968).
16. T. R. Goodmao aDd G. N. Lance. The nUlllericai integration of two-point boundary value problems. Math. TabU and

other Aids to Compllttltiolls UI(54) (1956).
17. G. N. Lance. Numerical Metltods for High·Speed Computers. Iliffe. London (1960).


